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Two simulation methods, namely Reynolds-Averaged Navier–Stokes (RANS) equations, and Probability
Distribution Function (PDF) are currently widely used for the modeling of multiphase flows. These two
approaches are supplemented with appropriate closure equations that take into account all the pertinent
forces and interaction effects on the solid particles, such as: particle–turbulence interactions; turbulence
modulation; particle–particle interactions; particle–wall interactions; gravitation, drag and lift forces.
The two methods have been used in order to simulate the turbulent particulate flow in upward pipes.
The flow domain in all cases was a cylindrical pipe and the computations were carried for upward pipe
flow. Monodisperse as well as polydisperse mixtures of particles have been considered. In general, the
average velocity results obtained from the two methods are in close agreement, because the methods
predict well the average velocity distribution of the carrier fluid as well as the solids. Thus, the differences
in the average axial velocities predicted by the methods are not substantial. Differences in the turbulence
intensity are more significant. A comparison of the numerical results obtained shows the relative impor-
tance of retaining the diffusion terms in both the axial and radial directions in the RANS method. Also the
comparisons of the results show the relative effect of the lift forces in the distribution of solid particles.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The particulate flow in channels has numerous engineering
applications ranging from pneumatic conveying systems to chem-
ical reactor design and is one of the most thoroughly investigated
subjects in the area of multiphase flow. Phenomenological models
for particulate flows in pipes have been developed in the past,
including those by Pfeffer et al. (1966) and Michaelides (1984).
All studies show that turbulence plays a very important role in
such flows, with the particles often modulating the turbulence
structure of the carrier fluid (Elghobashi and Abou-Arab, 1983;
Yarin and Hetsroni, 1994; Yuan and Michaelides, 1992; Crowe
and Gillandt, 1998, etc.).

The multiphase flow modeling method, which is often called
the ‘‘two-fluid model”, has been applied successfully in the model-
ing of dispersed two-phase systems. In the two-fluid model, both
the gas and particles are considered as two coexisting phases that
span the entire flow domain, each flowing with its own mass frac-
tion. In the case of polydisperse solid mixtures, each solids fraction
is characterized by its own mass fraction. Momentum interactions
ll rights reserved.
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between the two phases are characterized by drag force, which
appears as source term in the numerical computations. Two differ-
ent modeling methods for the description of the fluid and particle
phase motion have been used in conjunction with the general ap-
proach of the two-fluid model:

� the Reynolds-Averaged Navier–Stokes equations (RANS)
method;

� the Two-Phase Probability Distribution Function method.

The effects of these methods will be compared in this study,
whose objectives are as follows:

(a) the development of appropriate numerical techniques for
the implementation of the modeling methods;

(b) the generation of numerical results emanating from the two
methods; and

(c) the comparison of the results of the two methods.
2. Model description for particulate flow in pipes

Without loss of generality, it is assumed that the solid phase is
polydisperse and composed of particles of several sizes with
known mass fractions, which are denoted by ai. These fractions
may be of single or different materials and are characterized by
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their size and material density. For simplicity, in the formulation of
the governing equations, three solid fractions, namely 1, 2 and 3,
have been assumed to be present. Other numbers of fractions
may be accounted for, by simply extending the upper limit in the
pertinent summation operation. Hydrodynamic forces, such as
drag and lift act on all particulate fractions. The complete sets of
governing equations and boundary conditions for the two model-
ing methods are given in the following sub-sections:

2.1. Reynolds-Averaged Navier–Stokes (RANS) model

The RANS model is based on the solution of the complete
Navier–Stokes equations, without using any simplifications as for
example, the boundary layer assumptions that are inherent in
the Turbulence Boundary Layer model. In this paper, the governing
equations are written with the convective and diffusive terms on
the left-hand side and the various interaction forces on the right-
hand side of the corresponding equations.

2.1.1. Continuity for the gaseous phase

@u
@x
þ @ðrvÞ

r@r
¼ 0; ð1Þ

where u and v are the axial and radial velocity components of the
gas-phase, respectively and r is the radial coordinate.

2.1.2. Linear momentum equation in the longitudinal direction for the
gaseous phase
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where ~mt ¼ mt þ m is sum of the turbulentmt and laminarmviscosities;p
is the static pressure; ai is the mass concentration of i-th particle frac-
tion (three fractions are considered here); uri ¼ u� usi; vri ¼ v � vsi

are the relative velocities between the two phases in the axial and ra-
dial directions, respectively. The last term in Eq.(2) models the inter-
actions of the gas with the particle phases: s0i ¼

si
C0Di

is a particle

response time of the i-th particle fraction, which includes a correction

for the non-Stokesian drag: C0Di ¼ 1þ 0:15Re0:687
si ; si ¼ 18qm

qpd2
i

� ��1

is a

Stokesian particle response time for the i-th particle fraction with
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m ¼ di j~Vri j

m being the particle Reynolds number, and di

the particle equivalent diameter; Xi ¼ xsi � 0:5 @v
@x � @u

@r

� �
is the a rela-

tive angular velocity for the particles; the coefficient of Magnus lift
force, calculated by the closure equation given in Crowe et al.

(1998): CMi ¼ qCLi j~Vri j
qpdi jXi j

with the lift coefficient calculated as

CLi ¼ minð0:5;0:5viÞ, where the parameter vi ¼
di jxsi j
k~Vri j

; finally, q and

qp are the densities of the air and the particles respectively.

2.1.3. Linear momentum equation in the transverse direction for the
gaseous phase� � � �

@

@x
uv � ~mt

@v
@x

þ @

r@r
r v2 � ~mt

@v
@r

¼ � @p
q@r
þ @

@x
~mt
@u
@r
þ @

r@r
r~mt

@v
@r
� 2~mtv

r2

�
X
i¼1;3

ai
vri

s0i
� ðCMiXi þ FsiÞuri

� �
; ð3Þ

where the symbols are the same as in Eq. (2).
2.1.4. Turbulent kinetic equation for the gaseous phase
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where k ¼ u02þv 02þw02
2 is the turbulent energy of the fluid, eh ¼ k

ffiffi
k
p

Lh
is

the rate of dissipation calculated according to a four-way coupling
model (Crowe and Gillandt, 1998) using a hybrid length scale,

Lh ¼ 2L0
�k

L0þ�k
. In the last closure equation, L0 is the integral turbulence

length scale of the gaseous phase and �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pqp
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is an inter-particle distance; 0:5 u02si þ v 02si

� �
c

is the collision kinetic

energy of the solid phases, which is calculated by the method de-
vised by Kartushinsky and Michaelides (2004); T0 ¼ 0:3 k0

e0
is the tur-

bulence integral time scale in the gaseous flow. The last term in the
right-hand side of Eq. (4), which describes the turbulent kinetic en-
ergy attenuation is given by the model of Pourahmadi and Hum-
phrey (1983). The subscript c refers to the interparticle collision
model that will be described in a later section.

2.1.5. Continuity equation for solids
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where ~usi and ~vsi are the axial and radial components of particle
velocity, which include the effects of dispersion. The axial velocity
is calculated using the drift diffusion model as follows:

~usi ¼ usi � ðDti þ Dx
ciÞ
@ ln ai

@x
; ð6Þ

where Dti and Dx
ci are turbulent diffusion coefficients of particles,

which are computed using the model by Shraiber et al. (1990)
and with the pseudo-diffusion coefficients resulting from particle
collisions computed using the model by Kartushinsky and
Michaelides (2004), respectively. It must be noted that the inclusion
of ~usi in the governing equation, instead of usi, is one of the main
differences between the two modeling approaches.

2.1.6. Momentum equation in the axial direction for the solids phases
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2.1.7. Momentum equation in the radial direction for the solids phases
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where mxx
si ; mxr

si and mrr
si are the pseudo-viscosity coefficients, which are

due to interparticle collisions in the longitudinal and transverse
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directions. These coefficients have been obtained analytically from
the original collision model (Kartushinsky and Michaelides, 2004).
Fsi is the coefficient for the Saffman lift force, which is due to the
fluid shear and is calculated from the closure equation:

Fsi ¼
3:07 � qwi

qpdi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
ðrot~VÞr; ð9Þ

with the curl of the gas-phase velocity vector given by the
expression:
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here~i;~j and~k are ort-vectors in the cylindrical coordinates, e is cir-
cumferential coordinate and w is circumferential velocity
component.

The correction coefficient, wi was obtained by Mei (1992):
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2.1.8. Angular momentum equation in the longitudinal direction for
the solids phase
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Both pseudo-viscosity coefficients mx;x
si and mx;r

si are calculated using
formulae from Kartushinsky and Michaelides, 2004. The torque
coefficient, Cxi is determined as Cxi ¼ 10

3 (Rubinow and Keller,
1961; Michaelides, 2006).

2.2. Boundary conditions for the RANS model

The boundary conditions of the model are as follows:

2.2.1. In the axial direction at the pipe exit
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2.2.2. Inlet boundary (x = 0)
It is assumed that the particles enter into a well-developed, and

previously computed, single-phase velocity field with an initial
velocity lag determined by a coefficient Klag:

usi ¼ Klagu; vsi ¼ Klagv; xsi ¼ Klagð0:5rot~vÞ: ð14Þ

Klag is an average velocity lag (or velocity slip) that is necessary to
be defined at the beginning of the computations, L/D = 0, and we
have chosen a simple expression for it. Since the results presented
have been computed at L/D = 200, the effects of this empirical coef-
ficient have faded in all the results presented here.

2.2.3. Wall and centerline conditions
The no-slip condition is applied at the wall, while at the center

the axisymmetric conditions are applied:
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r ¼ R : u ¼ v ¼ k ¼ 0 ð16Þ
We prescribed the slip boundary conditions for the dispersed phase
according to the model by Ding et al. (1993) as the first step in the
computations (Eq. (17)). Subsequently and after the particle colli-
sions with the walls we follow the procedure by Matsumoto and
Saito (1970) to determine the particle–wall interactions. Accord-
ingly, we have two cases of particle–wall interactions: (a) sliding
collisions (Eq. (19)), and (b) non-sliding collisions (20). These two
cases are characterized by the coefficients of restitution, jn and fric-
tion, f.

For sliding collisions we have the wall boundary condition:
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where the interparticle spacing is given by the closure equation:
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If the transverse particle velocity is positive (vsi > 0Þ the correction
suggested by Matsumoto and Saito (1970) is used. Therefore, if
jusi � 0:5dixsij > 3:5l0ð1þ jnÞvsi the sliding collisions boundary
conditions are as follows:

ðaÞ u0si ¼ usi þ ldsignðusi � 0:5dixsiÞvsi;

x0si ¼ xsi þ 5ldsignðusi � 0:5dixsiÞ
vsi

di

� �
; v 0si ¼ jnvsi ð19Þ

For non-sliding collisions the condition jusi � 0:5dixsij 6 3:5l0ð1þ
jnÞvsi is satisfied and the boundary conditions of the dispersed
phases at the wall may be written as:

ðbÞ u0si ¼ usi �
2
7
ðusi � 0:5dixsiÞ;

x0si ¼ xsi þ
10ðusi � 0:5dixsiÞ

7di
; v 0si ¼ jnvsi ð20Þ

where the primes denote that the corresponding variables are to be
calculated post-collision. The coefficients ld and lo are the kinetic
(or dynamic) and static friction coefficients defined by Matsumoto
and Saito (1970) and given the values ld ¼ 0:4 and lo ¼ 0:8. The
coefficient f which appears in the inter-particle collision model is
not related to these two coefficients.

Three groups of empirical coefficients appear in the RANS
model. The first group stems from the k–e model, which is mod-
ified according to the method by Crowe and Gillandt (1998) and
takes into account the particle concentration by the use of a hy-
brid length scale (Michaelides, 2006). The second stems from the
use of the Matsumoto and Saito (1970) model of particle–wall
interactions, which introduces the dynamic and static friction
coefficients. The third group accounts for the inter-particle colli-
sions (Kartushinsky and Michaelides, 2004). All coefficients in
the computations that follow were taken from the original publi-
cations and have not been modified or optimized. Also, given that
this manuscript is a comparison of the results of the two model-
ing methods (RANS and PDF) it was not considered appropriate to
optimize of make parametric studies on any of the empirical
coefficients.

2.3. The probability distribution function (PDF) model

The basic premises of the PDF model for the description of di-
lute as well as dense dispersed multiphase systems emanate from
the kinetic theory of gases: there is a strong analogy between the
almost random motion of the particulate phase in turbulent multi-
phase flow and the random motion of molecules in a gas. For this
reason, several authors applied an approach that is similar to the
kinetic theory of gases in order to develop a statistical descrip-
tion of a dispersed particulate phase and to derive a continuum
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governing equation for the flow behavior of the dispersed phase.
Among these Morioka and Nakajima (1987), Reeks (1991) and
Zaichik and Vinberg (1991) proposed methods for the derivation
of such conservation equations from statistical principles. Simonin
(2001) and Fevrier and Simonin (2001) presented reviews of the
method. In this paper we use the formulation by Zaichik and
Vinberg (1991) with the addition of the effect of particulate
collisions.

The effect of the binary collisions of particles stems from the
contribution of the collisions to the fluctuating velocities of the
particles. Following the method by Zaichik et al. (2007), we con-
sider both the isotropic collisions (which are denoted by the sub-
script 0 in the equations that follow) as well as the anisotropic
collisions (which are denoted by the subscript 1). We consider
the motion and present results obtained for both small and rela-
tively large particles. Thus, the PDF equations for mass, momentum
and the equations for the Reynolds stresses of the dispersed phase
for a binary mixture (i = 1,2) are given in detailed description as
follows in order to facilitate the use of approach which is presented
in generalized form in (Zaichik et al., 2007):

2.3.1. Continuity equation
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2.3.2. Linear momentum equation in the axial direction
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where g is the gravitational acceleration as above and the coeffi-
cients Gn

ui denote the relaxation parameters. It must be noted that
the relaxation parameters are sometimes denoted as gn

ui. We have
chosen the capital G in order to differentiate these parameters from
the gravitational acceleration.

2.3.3. Linear momentum equation in the radial direction
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2.3.4. Velocity fluctuations evolution equation in the axial direction
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2.3.5. Velocity fluctuations evolution equation in the radial direction
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2.3.6. Velocity fluctuations evolution equation in the circumferential
direction
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2.3.7. Reynolds stress fluctuations evolution equation
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� lluiu02
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uiu0v 0

@u
@x
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�
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� �
u0v 0 �2u0siv 0si

s0i
þ

2 1� f m
ui

� �
sc1i

u0siv 0si

)
ai

þCxriiþCxrij ð27Þ
where the binary collision terms on the right-hand side of Eqs.
(22)–(27) may be decomposed into two terms and are calculated
by the following expressions:
Cxi ¼ C0
xi þ C1

xi; Cri ¼ C0
ri þ C1

ri; Cxxi ¼ C0
xxi þ C1

xxi;

Crri ¼ C0
rri þ C1

rri; Cxri ¼ C0
xri þ C1

xri ð28Þ

C0
xi ¼

pr2qaj 1þ jnð ÞW
2ðmi þmjÞ

WsxF1ðzÞ ð29Þ

C0
xj ¼

pr2qaið1þ knÞW
2ðmi þmjÞ

WsrF1ðzÞ ð30Þ
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C1
xi ¼

pr2qajð1þ knÞw04

2ðmi þmjÞW2

� WðBxxWx þ BxrWrÞW1 �
WxWrðBrxWx þ BrrWrÞ

2W
W2ðzÞ

	 

; ð31Þ

C1
ri ¼

pr2qajð1þ knÞw04

2ðmi þmjÞW2

� WðBrxWx þ BrrWrÞW1 �
WxWyðBxxWx þ BxrWrÞ

2W
W2ðzÞ

	 

; ð32Þ

C0
xxi ¼

pr2qajð1þ knÞW
ðmi þmjÞ

� mjð1þ knÞ
4ðmi þmjÞ

W2
sx þ

W2

3

 !
F2ðzÞ � W2

sx �
W2

3

 !
3F1ðzÞ

2z

" #(

�ji W2
sx

2F0ðzÞ
z
� W2

sx �
W2

3

 !
3F1ðzÞ

2z

" #)
; ð33Þ

C0
rri ¼

pr2qajð1þ jnÞW
ðmi þmjÞ

� mjð1þ jnÞ
4ðmi þmjÞ

W2
sr þ

W2

3

 !
F2ðzÞ � W2

sr �
W2

3

 !
3F1ðzÞ

2z

" #(

�ji W2
sr

2F0ðzÞ
z
� W2

sr �
W2

3

 !
3F1ðzÞ

2z

" #)
; ð34Þ

C0
xri ¼

pr2qajð1þ jnÞW
ðmi þmjÞ

mjð1þ jnÞ
4ðmi þmjÞ

WsxWsr þ
W2

3

 !
F2ðzÞ � WsxWsr �

W2

3

 !
3F1ðzÞ

2z

" #(

�ji WsxWsr
2F0ðzÞ

z
� WsxWsr �

W2

3

 !
3F1ðzÞ

2z

" #)
; ð35Þ
C1
xxi¼

pr2qajð1þjnÞ2m2
j W

4ðmiþmjÞ2
�

2w04BxxW3ðzÞþw02 W2
sxBxx

h

þ2WsxWsrBxrþW2
srBrrþ4ðWsxðBrxWsxþBrrWsrÞÞ

iW4ðzÞ
2z

�W2
sxðW

2
sxBxxþ2WsxWsrBxrþW2

srBrrÞ
W5ðzÞ

4z2

�

� pr2qajð1þknÞmjW
ðmiþmjÞ

�
ji

	
2w04Bxx�W3ðzÞ�w02ðW2

sxBxx

þ 2WsxWsrBxrþW2
srBrrÞ

W2ðzÞ
4z2 þ2w02ðWsxðBrxWsxþBrrWsrÞÞ

W6ðzÞ
2z

�W2
sx�ðW

2
sxBxxþ2WsxWsrBxrþW2

srBrrÞ
W7ðzÞ

2z2



�

k2
sik

2
sj

w04
2ð1�f2

12Þ

� w04ExxF1ðzÞþw02WsxðExrWsxþErrWsrÞ

 W1ðzÞ
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�
; ð36Þ
C1
rri¼

pr2qajð1þjnÞ2m2
j W

4ðmiþmjÞ2
�

2w04BrrW3ðzÞþw02
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�
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�
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�
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ð37Þ
C1
xri¼

pr2qajð1þjnÞ2m2
j W

4ðmiþmjÞ2
�

2w04BxxW3ðzÞþw02 ðWsxðBrxWsxþBrrWsrÞ½

þWsrðBxxWsxþBxrWsrÞÞ��
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z
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�
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�
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ji
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sxBxxþ2WsxWsrBxrþW2
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W7ðzÞ

2z2




�
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sik
2
sj

w04
ð1�f2

12Þ½2w04ExrF1ðzÞþw02ðWsxðExrWsxþErrWsrÞ

þWsrðExxWsxþExrWsrÞÞ�
W1ðzÞ

2z


�
; ð38Þ

The definition and closure equations of the additional parameters
used in the expressions (22)–(38) are as follows:

ksi ¼
u02si þ vsi

02

2
; f uxi ¼

Tx
Lpi

s0i þ Tx
Lpi
; f uri ¼

Tr
Lpi

s0i þ Tr
Lpi
;

fui ¼
ðfuxi þ 2f uriÞ

3
; fij ¼

ffiffiffiffiffiffiffiffiffi
fuifuj

q
;

w02 ¼ ksi þ ksj � 2fij

ffiffiffiffiffiffiffiffiffiffiffi
ksiksj

q
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ksiksj
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1

2ð1� f2
ijÞ
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ffiffiffiffiffiffi
ksi
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p
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 !#

;

Exx ¼
1

2ð1� f2
ijÞ

Rjxx
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si
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 !#
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:

Where Rixx ¼ 0;Rirr ¼ 0;Rixr ¼ u0 siv 0si;mi ¼ p
6 qpd3

i is the mass of the
i-th particle and r ¼ diþdj

2 is the radius of the collision sphere. The
following parameters and functions are used in the application of

the pdf model: z ¼ W2

2w02 ;Wsx ¼ us2 � us1;Wsr ¼ v s2 � vs1;W ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

sx þW2
sr

q
.
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The functions Fi (z) and Wi (z) are as follows:
F0ðzÞ ¼
expð�zÞffiffiffiffiffiffi

pz
p þ 1þ 1

2z

� �
erf

ffiffiffi
z
p
;w0ðzÞ

¼ 3 expð�zÞffiffiffiffiffiffi
pz
p þ 1� 3

2z

� �
erf

ffiffiffi
z
p
;

F1ðzÞ ¼ 1þ 1
2z

� �
expð�zÞffiffiffiffiffiffi

pz
p þ 1þ 1

z
� 1

4z2

� �
erf

ffiffiffi
z
p
;W1ðzÞ

¼ 4F0ðzÞ � 3F1ðzÞ;W2ðzÞ ¼ W1ðzÞ �
2W0ðzÞ

z
;

F2ðzÞ ¼ F1ðzÞ þ
2F0ðzÞ

z
;W3ðzÞ ¼ F1ðzÞ þ

2W1ðzÞ
z

;

W4ðzÞ ¼ W1ðzÞ �
W2ðzÞ

2z
;W5ðzÞ ¼ W1ðzÞ �

7W2ðzÞ
2z

;

W6ðzÞ ¼ W1ðzÞ �
W2ðzÞ

z
;W7ðzÞ ¼

W2ðzÞ þW5ðzÞ
2

where u0siv 0si is the cross-correlation velocity of the i-th fraction of
the dispersed phase; u02s1;v 02si and w02si are the velocity correlations
in axial, radial and circumferential directions, respectively. All these
velocity correlations are computed taking into account the colli-
sions of the particles and the evolution of the collision velocities
into turbulent motion.

2.4. Boundary conditions for the PDF model

The boundary conditions at the axis of the pipe (r = 0) are:

@usi

@r
¼ vsi ¼

@u02si

@r
¼ @vsi

02

@r
¼ @wsi

02

@r
¼ u0siv 0si ¼ 0 ð39Þ

The boundary conditions at the wall (r = R) are:

s0i
@usi

@r
¼ 2
ð1� jxÞ
ð1þ jxÞ

us

ffiffiffiffiffiffiffiffiffiffi
2

pv 02si

s
ð40Þ

vsi ¼ 0 ð41Þ

s0i
@u02si

@r
¼ 3
ð1� j2

x Þ
ð1þ j2

x Þ
u02si

ffiffiffiffiffiffiffiffiffiffi
2

pv 02si

s
ð42Þ

s0i
@v 02si

@r
¼ 2
ð1� j2

nÞ
ð1þ j2

nÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
2vsi

02

p

r
ð43Þ

s0i
@w02si

@r
¼ 0 ð44Þ

u0siv 0si ¼ �lxv 02 ð45Þ
2.5. Other closure equations that have been used in the PDF model

Several time scales are used with the PDF models. Their closure
equations may be summarized as follows:

The inter-particle collision times, sci; sc1i, and sc2i are as follows:

sci ¼ 2p
3ksi

� �1=2
di

16að1�f m
ui
Þ0:5
; sc1i ¼ 2p

3k si

� �1=2
5di

8að1þknÞð3�knÞð1�f m
ui
Þ0:5

, and sc2i ¼

2p
3k si

� �1=2
45di

4aið1þknÞð49�33knÞð1�f m
ui
Þ0:5

. The average time that elapses be-

tween collisions s0i and sc2i is: s2i� : s2i� ¼
s0

i
sc2i

sc2iþð1�f m
ui
Þs0

i
.

The particle response time: s0i ¼
qpd2

i
18lC0Di

, and with the corrections
for non-Stokesian drag C0Di ¼ 1þ 0:15Re0:687

si , for Res 6 103and

C0Di ¼ 0:11 Resi
6 for Resi > 103.

The time of particle interactions with the turbulent eddies has
been calculated according to the method proposed by Wang and
Stock (1993):
Tl
Lpi ¼

TLpiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðmTiciÞ

2
q ;Tn

Lpi ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðmTiciÞ

2
q

�mTiciffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðmTiciÞ

2
q TLpi;T

m
Lpi ¼

Tl
Lpiþ2Tn

Lpi

3

The model coefficients that accounts for the effect of turbulence on

the motion of the particles are: f 1
ui ¼

2X1iþZ2
1i

2X1iþ2X2
1iþZ2

1i
; g1

ui ¼ 1
X1i
� f 1

ui;

l1ui ¼ g1
ui �

ð2X1iþZ2
1iÞ

2�2X2
1iZ

2
1i

ð2X1iþ2X2
1iþZ2

1iÞ
2 , with X1i ¼

s0
i

T1
Lpi
; Z1i ¼ sT

T1
Lpi
; 1 ¼ l;n;m, are

orientation along x, r and z directions, correspondingly. Other
parameters that have been used in the computations of this paper
are as follows:

mTi ¼
TLpi

TE
¼ FðStEiÞ; TLpi ¼ FðStEiÞTE; TE ¼ 2:81TL;

FðStEiÞ ¼ 1� 0:644

ð1þ StEiÞ0:4ð1þ0:01StEiÞ
; StEi ¼

s0i
TE
;

c ¼ ju� usjffiffiffiffiffiffiffiffiffiffiffi
2k=3

p � jur jffiffiffiffiffiffiffiffiffiffiffi
2k=3

p :

The Lagrange integral time scale is defined as: TL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10m
u2
�

� �2
þ 1 k

e

� �2
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,

with 1 ¼ C0:5
l ¼ 0:3. The Taylor time scale is: sT ¼

ffiffiffiffiffiffiffiffiffiffi
2Rek

a0
ffiffiffiffi
15
p

q
sK , with

Rek ¼
ffiffiffiffiffiffiffi
20k2

3em

q
; sK ¼

ffiffim
e

p
, and a0 ¼ 11þ7Rek

205þRek
.

The restitution coefficient of particles in the longitudinal direc-
tion during the collisions is:

kx ¼
1� nx; 0 6 nx 6

2
7

5
7 ; nx >

2
7

(
; where nx ¼ lxð1þ jxÞ tan

vsi

usi

����
����;

The turbulent kinetic energy of the particles is: ksi ¼ 0:5ðu02siþ
v 02si þw02si Þ:

We have used the standard notation in the closure equations for
the PDF model. Thus, among the symbols that have been used: StE

is the Stokes number; TE is the Euler integral time scale; u� is the
friction velocity; c is the so-called ‘‘drift parameter;” is the rate
of turbulent kinetic energy dissipation; lx is the friction coefficient
for the particle interactions with the wall; and sK is the Kolmogorov
microtime scale. As with the RANS method all coefficients that ap-
pear in the PDF model are the same as in the original publication
by Zaichik et al. (2007).

3. Numerical method

In the RANS and PDF computations the control volume method
was used. The governing equations were solved using the ILU
method, which incorporates a strong implicit procedure with low-
er and upper matrix decomposition and with an up-wind scheme.
For the computations presented in this paper, 600,000 uniformly
sized volumes were used. The wall functions, obtained from Peric
and Scheuerer (1989) were incorporated at a dimensionless dis-
tance yþ ¼ 11 from the wall. All computations were extended from
the pipe entrance to a distance x/D = 200, where the results reach
quasi-steady conditions and the entrance effects have faded. For
the particulate phases, where the size of particles is often larger
than the size of the viscous boundary sublayer, we employed the
numerical method developed by Hussainov et al. (1996) and used
wall functions that took into account the size of the particles.

We conducted an extensive grid uncertainty study and con-
cluded that the 600,000 (40 � 15,000) volumes grid is adequate
for the control volume computations of this study. This type of grid
spacing in the transverse direction is approximately 50% larger
than the diameters of the larger particles used. Using a denser grid
of 937,500 points (50 � 18,750) showed less than 0.5% deviation in
the gas and solids velocity profile results, less than and less than
0.6% deviation in the solids velocity profile results and less than
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Fig. 1. Axial velocity profile of the carrier phase with monodisperse particles of
0.5 mm.
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ig. 2. Axial velocity profile of air with a solids mixture composed of equal parts of
heres with diameters 0.50, 0.45 and 0.55 mm. The experimental data are from

suji et al. (1984).
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0.5% deviation in the solids fraction concentration results. How-
ever, a significantly lighter grid with 322,000 (28 � 11,500) vol-
umes showed a much lower fidelity, with maximum deviations
of 4.5% for solids and gas velocities and 5.2% for solids fraction con-
centration profiles. In general, all grid sensitivity computations
that were conducted proved that the 40 � 15,000 grid is adequate
for the computation of accurate results from this model.
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ig. 3. Axial velocity profile of air with a solids mixture composed of equal parts of
heres with diameters 0.50, 0.25 and 0.75 mm.
4. Results and discussion

All the numerical results that are presented in the following
paragraphs were obtained at a distance of 200 diameters from
the entrance of the channel, where quasi-steady flow conditions
have been achieved. Whenever possible, the results are presented
in dimensionless form. The centerline axial gas velocity um has
been used to make the gas and the solids velocities dimensionless.
The square of this velocity was used to normalize the turbulent
kinetic energies. The properties of the particles used in the compu-
tations are those of polystyrene with material density qp ¼
1000 kg=m3. The pipe diameter is D = 30.5 mm and, at an average
gas average velocity �u ¼ 11 m=s the Reynolds number of the flow
is: Re ¼ 2:2 � 104. The solids loading is 3.4 in all cases unless indi-
cated otherwise.

Fig. 1 shows the normalized axial velocity of the gas-phase ob-
tained by using the two methods. It is observed that the results of
the PDF method show the typical channel flow profile, while those
obtained by the RANS method show the effect of the higher solids
loading at the center of the channel by the shifting of the maxi-
mum air velocity to a position that is closer to the wall.

Fig. 2 also depicts the normalized axial velocity of the carrier
fluid, but now a polydisperse mixture of particles (mixture A) is
carried. Mixture A is composed of equal parts (33.3%) of particles
with diameters d2 ¼ 0:50 mm; d1 ¼ 0:45 mm and d3 ¼ 0:55 mm,
that is there is a 10% deviation from the mean diameter of
0.5 mm and is the same as that examined by Tsuji et al. (1984).
The data from the latter study are also shown in the Figure for
comparison. When this Figure is compared to Fig. 1, it may be is
observed that the polydispersity of the particulate mixture has a
small but not significant effect on the axial velocity of the gas ob-
tained from the two models.

Fig. 3 depicts, again, the carrier fluid axial velocity profile, with
another solids mixture (mixture B) composed of equal parts
(33.3%) of spheres with diameters d2 ¼ 0:5; d1 ¼ 0:25 and
F
sp
T

d3 ¼ 0:75 mm, that is there is a 50% deviation from the mean diam-
eter. It is observed that, in this case, the results from the RANS
method exhibit a maximum at the center of the channel. This is
attributed to the higher dispersivity and collisions of the very small
particles ðd1 ¼ 0:25 mmÞ that constitute one third of the solids
loading. It is also observed that the results from the RANS and
the PDF methods are very close.

Fig. 4 depicts the solid phase velocity for mixture A, (equal parts
of 0.50, 0.45 and 0.55 mm spherical particles) and also shows the
experimental data obtained by Tsuji et al. (1984). It is observed
that the results by RANS and PDF agree very well with the exper-
imental data.

Since the lift force was not taken into consideration in the PDF
model, we conducted a separate computation with the RANS meth-
od excluding the lift force, but still keeping all the other effects,
such as gravity and particle collisions. The results are shown in
Fig. 4a, which includes the normalized solids concentration and
the normalized gas and solids velocities. It is observed that the
gas and solids velocities obtained from the RANS model when
the lift force is absent are significantly closer to those obtained
F
sp
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Fig. 4. Axial velocity profile of solids with a mixture composed of equal parts of
spheres with diameters 0.50, 0.45 and 0.55 mm. The experimental data are from
Tsuji et al. (1984).
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Fig. 5. Axial velocity profile of solids with a mixture composed of equal parts of
spheres with diameters 0.50, 0.25 and 0.75 mm.
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from the PDF method. Also, the almost solids concentration ob-
tained from these computations is almost identical to that ob-
tained from the PDF model. It is apparent from this figure that,
while the absence of lift does not explain the differences observed
in their entirety, it is the most important cause for the differences
in the numerical data.

Fig. 5 also shows the solid phase velocity and corresponds to the
results of Fig. 3 for the carrier fluid. Mixture B is composed of equal
parts of spheres with diameters 0.5, 0.25 and 0.75 mm. It is ob-
served that, as a result of the addition of the finer particles, the
RANS results show a more pronounced peak at the center of the
channel, while the PDF results are rather insensitive to this change
of the solids composition and show an almost uniform velocity
profile.

Fig. 6 depicts the normalized turbulent kinetic energy of air
(turbulence intensity) when the channel carries solids correspond-
ing to mixture A. It is observed that the results obtained from the
two methods exhibit a sharp maximum close to the wall of the
channel, but the numerical value of this maximum is significantly
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Fig. 4a. RANS computations excluding the lift force. Axial velocity profile of gas and
solids and solids concentration with a mixture composed of equal parts of spheres
with diameters 0.50, 0.45 and 0.55 mm.
different. It is also observed that the results obtained by the RANS
method are closer to the experimental data by Tsuji et al. (1984).

The profile of the average radial velocity of the solid particles for
mixture A is shown in Fig. 7, where it is observed that the results
emanating from the RANS model show a finite but very small
velocity, while the PDF results indicate a vanishing radial velocity.
This indicates that, in the RANS results, the solid particles’ mixture
re-arranges itself in the radial direction, most probably under the
action/influence of the radial component of turbulence and the lift
forces.

The concentration profile of the solids phase is shown in Fig. 8
for air carrying monodisperse solids of 0.50 mm diameters. It is
obvious that the results obtained using the PDF method do not
show the marked profile exhibited by the results of the RANS
method. It is believed that this is due to the fact that lift forces
are not taken into account in the PDF algorithm that was used
for this study.

Fig. 9 depicts the results obtained by the two methods for air
carrying the polydisperse mixture A, which is composed of equal
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Fig. 6. Turbulent energy of the carrier fluid with a mixture composed of equal parts
of spheres with diameters 0.50, 0.45 and 0.55 mm. The experimental data are from
Tsuji et al. (1984).
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Fig. 7. Radial velocity profile of solids with a mixture composed of equal parts of
spheres with diameters 0.50, 0.45 and 0.55 mm.
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parts of spheres with 0.5, 0.45 and 0.55 mm diameters. Again, the
most striking difference is the uniformity of the profile obtained by
the PDF method, which is due to the absence of the action of the lift
forces.

5. Conclusions

RANS and PDF are two methods that are widely used in the
modeling of gas–solids flows, with each one having its own advan-
tages and disadvantages. We have compared the results of the two
methods in the case of an axisymmetric channel upward flow with
inertial particles and a moderate loading of 3.4. The results showed
that the two methods produce results for the axial velocity of the
gas-phase that agree reasonably well, with the RANS method
showing the shift in the maximum velocity. The results of the
two methods for the velocity of the solids are very similar and
are in good agreement with available experimental data. The re-
sults of both methods exhibit the pronounced maximum in the tur-
bulent intensity of the carrier phase near the wall, although the
numerical values of this maximum intensity differ significantly. Fi-
nally, the solids concentration profiles obtained by the PDF method
show an almost uniform concentration, which is due to the ab-
sence of the action of lift forces on the solids. It is believed, that
the addition of the lift forces in the PDF algorithms would have re-
sulted in data obtained by the PDF and the RANS methods that are
significantly similar.
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